DIASTEREOSELECTIVE ADDITION OF Y-ALKYLTHIO-ALLYLBORONATES TO ALDEHYDES

Reinhard W. Hoffmann and Bruno Kemper Fachbereich Chemie der Philipps-Universität Marburg Hans-Meerwein-Straße, D-3550 Marburg an der Lahn

<u>Summary</u>: The Z- and E- γ -alkylthio-allylboronates <u>5</u> and <u>10</u> were found to add aldehydes forming diastereoselectively the adducts <u>7</u> and <u>6</u> respectively in high yield.

The alkylation and hydroxyalkylation of sulfur substituted allyllithium reagents (1, Met = Li) is of interest for various synthetic objectives. Their application¹⁾ requires selective α - or γ -attack of the partner, which can be achieved by suitable choice of the substitutents R² on sulfur and the metal involved²⁻⁵⁾.

Even then, addition of the prochiral reagent <u>1</u> to a prochiral aldehyde or ketone leads to two diastereomeric adducts, be it of type <u>2</u>, or type <u>3</u>. When the diastereoselectivity has been determined, it has been reported to be only small^{3,5,6)}. We reasoned that the high diastereoselectivity observed on addition of crotyl= boronates to aldehydes⁷⁾ could also be extended to the reaction of heteroatomsubstituted allylboronates, such as <u>1</u> (Met = B(OR)₂). We report here on the preparation of the γ -alkylthio-allylboronates <u>5</u> and <u>10</u> and their diastereoselective and regioselective addition to aldehydes. In order to prepare the Z-isomer 5, allylmercaptan was metalated by n-butyl= lithium in THF/TMEDA²⁾ and reacted with one equivalent of $ClB[N(CH_3)_2]_2^8$. Subsequent addition of methyl iodide furnished 65% of 4, which was shown by ¹³C-NMR to be >95% of Z-configuration. The diaminoborane 4 was converted in quantitative yield to the desired allylboronate 5a simply by addition of pinacol, cf.⁷⁾.

Reaction of <u>5</u> with aldehydes produced high yields of the adducts <u>7</u> with marked diastereoselectivity (cf. the table, entries 1-4). This contrasts to the diastereounselective addition of <u>1</u> (\mathbb{R}^2 , Met = Mg) to aldehydes³.

Entry	Ally	lboronate	Aldehyde	equiv.	Homoallylalcohols			
	R'	E:Z			% yield	<u>6</u>	:	<u>7</u>
1	CH 3	<5 : >95	C ₆ H ₅ CHO	1.0	95	2	:	98
2	CH 3	∢ 5 : >95	(CH ₃) ₂ CHCHO	1.0	90	5	:	95
3	CH ₃	8:92	CH 3 CHO	1.0	86	8	:	92
4	CH 3	8:92	CH 3 CH 2 CHO	1.0	91	9	:	91
5	CH ₃ CH ₂	44:56	CH ₃CH ₂CHO	1.0	90	44	:	56
6	CH ₃ CH ₂	73 : 27	CH₃CH₂CHO	1.0	94	77	:	23
7	CH ₃ CH ₂	44 : 56	CH ₃ CH ₂ CHO	0.4	95	91	:	9
8	CH ₃ CH ₂	44 : 56	(CH ₃) ₂ CHCHO	0.4	95	95	:	5
9	CH ₃ CH ₂	70 : 30	сн, сно	0.65	80	90	:	10
10	CH ₃ CH ₂	70:30	C ₆ H ₅ CHO	0.65	95	95	:	5

4884

The $3R^*$, $4R^*$ -structure of the benzaldehyde adduct $\underline{7}$ was proven by conversion to the epoxide $\underline{8}$ (i. reduction with diimide, ii. trimethyloxonium-tetrafluoroborate, iii. aqueous sodium hydroxide), which showed in its ¹H-NMR-spectrum a 4 Hz coupling constant of the two oxirane-protons, characteristic of cis-substituted epoxides⁹. It is assumed that the other adducts derived from $\underline{5}$ have the same stereostructure.

The reagent <u>10</u> with E-configuration of the double bond has so far not been obtained in pure form: metalation of allyl-ethyl-sulfide with n-butyllithium in dimethoxyethane followed by reaction with $ClB[N(CH_3)_2]_2$ gave 85% of a 70:30 mixture of E and Z products, which were quantitatively converted to the pinacol esters <u>10</u> and <u>5b</u>.

Reaction of such E/Z-mixtures with one equivalent of propionaldehyde resulted in two diastereomeric adducts <u>6</u> and <u>7</u> (cf. entries 5,6 of the table). The diastereomer ratio corresponded closely to the E/Z-ratio of the reactands, demonstrating that not only 5, but also 10 added with high diastereoselectivity to aldehydes.

We noted a considerable difference in the reaction rates of 5 and 10. The higher reactivity of 10 could be used to obtain the adducts 6 in reasonable diastereomeric purity simply by adding slightly less aldehyde to the mixture of 5 and 10, than is required to react only 10; cf. entries 7-10 of the table. The structure of the benzaldehyde adduct 6 follows as $3S^*, 4R^*$ from its conversion (vide supra) to 9 showing J = 2.1 Hz of the oxirane protons⁹).

In summary we have been able to convert aldehydes in high yields and high diastereoselectivity to either of the adducts 6 or 7 by making use of the sulfur-

substituted allylboronates <u>10</u> and <u>5</u>. The corresponding oxygen-substituted allylboronates <u>11</u> are also of interest¹⁰⁾. We have prepared the reagents <u>11</u> by similar routes. Their addition to aldehydes proceeded in high yield and diastereoselectivity, essentially as observed with <u>5</u> and <u>10</u>. A detailed report of these studies will be published in the near future.

	R	<u> </u>		Z
	CH ₃	<5	:	>95
	CH 3	45	45 :	55
11	CH 3 OCH 2	<5	:	>95
••	$CH_3OC(CH_3)_2$	6	:	94

Acknowledgement

We would like to thank the Fonds der Chemischen Industrie for generous support of this study. We are grateful to the <u>Deutsche Shell Chemie GmbH</u> and the <u>BASF</u> <u>Aktiengesellschaft</u> for providing us with chemicals.

Literature

- D.Seebach and <u>K.H.Geiß</u>, J.Organometallic Chemistry Library <u>1</u>, 1 (1976) cf. pp. 21-27.
- 2) K.H.Geiß, D.Seebach and B.Seuring, Chem.Ber. 110, 1833 (1977).
- 3) M.Pohmakotr, K.H.Geiß and D.Seebach, Chem.Ber. 112, 1420 (1979).
- 4) P.M.Atlani, J.F.Biellmann, S.Dube and J.Vicens, Tetrahedron Lett. <u>1974</u>, 2665; <u>K.Oshima</u>, <u>H.Yamamoto</u> and <u>H.Nozaki</u>, J.Amer.Chem.Soc. <u>95</u>, 7926 (1973); <u>Y.Yamamoto</u>, <u>H.Yatagai</u> and <u>K.Maruyama</u>, Chem.Lett. <u>1979</u>, 385; Y.Yamamoto, H.Yatagai and K.Maruyama, J.Org.Chem. <u>45</u>, 195 (1980).
- 5) <u>P.Brownbridge</u> and <u>S.Warren</u>, J.Chem.Soc. Perkin I, <u>1977</u>, 1131, 2272; <u>T.Hayashi</u>, <u>N.Fujitaka</u>, <u>T.Oishi</u> and <u>T.Takeshima</u>, Tetrahedron Lett. <u>1980</u>, 303.
- 6) <u>M.R.Binns</u>, <u>R.K.Haynes</u>, <u>T.L.Houston</u> and <u>W.R.Jackson</u>, Tetrahedron Lett. <u>1980</u>, 573;
 - F.Bourelle-Wargnier, M.Vincent and J.Chuche, J.Org.Chem. 45, 428 (1980).
- 7) <u>R.W.Hoffmann</u> and <u>H.-J.Zeiß</u>, Angew.Chem. <u>91</u>, 329 (1979); <u>92</u>, 218 (1980); Angew.Chem., Int.Ed.Engl. <u>18</u>, 306 (1979); <u>19</u>, 218 (1980).
- 8) H.Nöth and P.Fritz, Z.Anorg.Allg.Chemie 322, 297 (1963).
- J.C.Paladini and J.Chuche, Bull.Soc.Chim.France <u>1974</u>, 187;
 G.L.Lyle and L.K.Keefer, J.Org.Chem. 31, 3921 (1966).
- 10) cf. <u>P.G.M.Wuts</u>, Abstr. ORGN 313 of the 180. Meeting of the Amer.Chem.Society, San Francisco/Las Vegas, 1980.

(Received in Germany 15 September 1980)

4886